Archaea

Index to this page

When these microscopic organisms were first discovered (in 1977), they were considered bacteria. However, when their ribosomal RNA was sequenced, it became obvious that they bore no close relationship to the bacteria and were, in fact, more closely related to the eukaryotes (including ourselves!) For a time they were referred to as archaebacteria, but now to emphasize their distinctness, we call them Archaea.

They have also been called Extremophiles in recognition of the extreme environments in which they have been found: Most of the >250 named species that have been discovered so far have been placed in two groups:

Euryarchaeota

There are three main groups:

1. Methanogens

These are found living in such anaerobic environments as They are chemoautotrophs; using hydrogen as a source of electrons for reducing carbon dioxide to food and giving off methane ("marsh gas", CH4) as a byproduct.

4H2 + CO2 -> CH4 + 2H2O

Two methanogens that have had their complete genomes sequenced: [View the data]

2. Halophiles

These are found in extremely saline environments such as the Great Salt Lake in the U.S. and the Dead Sea. They maintain osmotic balance with their surroundings by building up the solute concentration within their cells.

3. Thermoacidophiles

As their name suggests, these like it hot and acid (but not as hot as some of the Crenarchaeota!). They are found in such places as acidic sulfur springs (e.g., in Yellowstone National Park) and undersea vents ("black smokers").

Crenarchaeota

The first members of this group to be discovered like it really hot and so are called hyperthermophiles. One can grow at 121°C (the same temperature in the autoclaves used to sterilize culture media, surgical instruments, etc.).

Many like it acid as well as hot and live in acidic sulfur springs at a pH as low as 1 (the equivalent of dilute sulfuric acid). These use hydrogen as a source of electrons to reduce sulfur in order to get the energy they need to synthesize their food (from CO2).

Aeropyrum pernix is one member of the group that has had its genome completely sequenced [View].

Other members of this group seem to make up a large fraction of

Evolutionary Position of the Archaea

The archaea have a curious mix of traits characteristic of

The table summarizes some of them.

Eukaryotic Traits Bacterial Traits

What can we conclude from this collection of traits?

As more and more genes are sequenced, it appears that the line that eventually produced eukaryotes split off after the line leading to the euryarchaeota. If that is the case, Archaea is a paraphyletic group, and we shared a common ancestor with the other archaea more recently than they (and we) did with the euryarchaeota.

Economic Importance of the Archaea

Because they have enzymes that can function at high temperatures, considerable effort is being made to exploit the archaea for commercial processes such as providing Archaea may also be enlisted to aid in cleaning up contaminated sites, e.g., petroleum spills.
Welcome&Next Search

16 April 2014