(Software) Process Improvement

Mark C. Paulk, Ph.D.
http://www.cs.cmu.edu/~mcp/
mcp@cs.cmu.edu

March 29, 2012
Carnegie Mellon MBA

Two Paradigms

Analytic
• based on measurement, principles
• Deming, Juran, Six Sigma, …

Best Practice Frameworks
• practices that consistently demonstrate significant improvements to the bottom line
• ISO 9001, CMMI, eSCM-SP, …
The Quagmire...

315 standards, models, guidelines developed by 46 different organizations

- Baldrige
- CBA IPI
- CMMI
- CobiT
- DOD-STD-2167A
- DOD-STD-2168
- DOD-STD-7935A
- EIA 632
- EIA 731
- eSCM
- FAA iCMM
- IEEE 1220
- IEEE/EIA 12207
- IPD-CMM
- ISO 15939
- ISO 9000

ISO/IEC 12207
ISO/IEC 15288
ISO/IEC TR 15504
J-STD-016
MIL-STD-498
MIL-STD-499B
People CMM
PSM
PSP
Q9000
QS 9000
RTCA DO-178B
SA-CMM
SCAMPI
SCE
SDC/CR
SDCE
SECAM
SE-CMM
SW-CMM
TL 9000
TSP

... 

Pfeffer’s One-Eighth Rule

Why aren’t “best practices” that are known to be effective implemented by all organizations?

- One half of all people, in spite of the evidence, don’t believe the connection between the practices and the results.

- One half of those who see the connection try to make isolated changes rather than using a comprehensive and systemic approach.

- Only about half of those who make systemic changes persist long enough to derive the benefits.
Evidence-Based Software Engineering


Evidence-based management

• Pfeffer and Sutton, Hard Facts, Dangerous Half-Truths, & Total Nonsense: Profiting from Evidence-Based Management, 2006

and so forth...

Humphrey’s Motivational Speech

Do you believe that management is a good idea that adds value to your organization?

Do you believe that organization learning makes for more effective and efficient work?

Do you believe that using measurement and data to drive decisions is better than intuition?

Do you believe that continual improvement builds business value?

... Then why don’t you do any of those things?


**Software CMM v1.1 (1987-2005)**

<table>
<thead>
<tr>
<th>Level</th>
<th>Focus</th>
<th>Key Process Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Optimizing Continuous process improvement</td>
<td>Defect Prevention</td>
</tr>
<tr>
<td>4</td>
<td>Managed Product and process quality</td>
<td>Technology Change Management</td>
</tr>
<tr>
<td>3</td>
<td>Defined Engineering processes and organizational support</td>
<td>Process Change Management</td>
</tr>
<tr>
<td>2</td>
<td>Repeatable Project management processes</td>
<td>Continuous process improvement</td>
</tr>
<tr>
<td>1</td>
<td>Initial Competent people (and heroics)</td>
<td>Quantitative Process Management</td>
</tr>
</tbody>
</table>

**Implications of Maturity**

*Better predictability… Less variability… Improved performance…*

<table>
<thead>
<tr>
<th>Level</th>
<th>Process Characteristics</th>
<th>Predicted Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Optimizing Process improvement is institutionalized</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Managed Product and process are quantitatively controlled</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Defined Software engineering and management processes defined and integrated</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Repeatable Project management system in place; performance is repeatable</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Initial Process is informal and unpredictable</td>
<td></td>
</tr>
</tbody>
</table>
Risks of Model-Based Improvement

Models are simplifications of the real world.

Models are not comprehensive.

Interpretation and tailoring must be aligned to business objectives.

Judgement is necessary to use models correctly and with insight.

Potential for dysfunctional behavior to get a maturity level rating.

Prioritizing Business Objectives

Treacy and Wiersma define three values that a company can focus on to drive business success.

Product leadership – features, innovation
  • typical focus of commercial shrinkwrap companies

Customer intimacy – niche products, relationships
  • typical focus of IT service providers

Operational excellence – promised features, on schedule, on budget
  • typical focus of custom software development

**Personal Software Process (PSP)**

Applies the CMM concepts of process discipline and quantitative management to the work of the individual software professional in a classroom setting.

Focuses on planning, quality, and productivity.

Typically involves developing programs using increasingly sophisticated processes.

*Watts Humphrey, A Discipline for Software Engineering, 1995.*

---

**Improvements in PSP Quality**

Trends in Quality Within Ability Rankings

Team Software Process (TSP)

Build teams of PSP-trained professionals, launched in an industry project context.

Provide
• a supportive environment
• management standards
• peers doing similar work
• coaching support

Note that CMMI tells “what” to do but not how. PSP and TSP tell “how.”

Effective Teams

Group thinking is usually better, less variable, and more precise than individual thinking.


Range of team performance, rather than being an order of magnitude, tends to be between 85% and 115% of the norm.


Principles of Quality Management

Workers Own the Quality Program

The people doing the work must own the quality program.

If the people who actually perform the work do not strive to build quality products, they almost certainly will not.

To do quality work, all of the developers must feel that quality is important and the entire team must participate in the quality program.

Principles of Quality Management
Measure Quality

Teams must measure quality.

Without measurements, quality is just talk.

Since quality is a complex topic, no single measure will be adequate and multiple quality measures are needed.


Intuit TSP Results

Over 40 TSP teams

Post code-complete effort cut from 33% to 8% of the project

Standard test times cut from four months to one month

 Twice the functionality in less time with higher quality
Microsoft TSP Results

Four releases for one team
Delivered on time
Increased productivity by 81%
Reduced system test defects by a factor of 133
Cut acceptance test and production defects to zero

CMMI-DEV v1.3

<table>
<thead>
<tr>
<th>Level</th>
<th>Process Characteristics</th>
<th>Process Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Optimizing</td>
<td>Focus is on quantitative continuous process improvement</td>
<td>Causal Analysis &amp; Resolution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organizational Performance Management</td>
</tr>
<tr>
<td>4 Quantitatively Managed</td>
<td>Process is measured and controlled</td>
<td>Organizational Process Performance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantitative Project Management</td>
</tr>
<tr>
<td>3 Defined</td>
<td>Process is characterized for the organization and is proactive</td>
<td>Requirements Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Product Integration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verification</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validation</td>
</tr>
<tr>
<td>2 Managed</td>
<td>Process is characterized for projects and is often reactive</td>
<td>Requirements Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Project Monitoring &amp; Control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supplier Agreement Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Product &amp; Process Quality Assurance</td>
</tr>
<tr>
<td>1 Initial</td>
<td>Process is unpredictable, poorly controlled, and reactive</td>
<td>Configuration Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement &amp; Analysis</td>
</tr>
</tbody>
</table>
ISO/IEC 15504 aka SPICE
(Process Assessment)

Continuous representation
• processes (purpose + outcomes)
• capability dimension (six levels)

Process Reference Models
• ISO/IEC 12207 (Software life cycle processes)
• ISO/IEC 15288 (Systems life cycle processes)

Process Assessment Models
• ISO/IEC 15504-2 (Process assessment – Part 2: Performing an assessment)
• ISO/IEC 15504-5 (Software process assessment – Part 5: An assessment model and indicator guidance)


ISO 15504 Capability Dimension

Apply generic process management attributes to rate selected processes
• processes from ISO 12207, ISO 15288, ISO 15504-5
• aka “continuous architecture”

Six capability levels
• level 0 = incomplete
• level 1 = performed
• level 2 = managed
• level 3 = established
• level 4 = predictable
• level 5 = optimizing
ISO/IEC 12207
“Software Life Cycle Processes”

A common framework for software life cycle processes
• with well-defined terminology

Contains processes, activities, and tasks that are to be applied during the acquisition of
• a system that contains software
• a stand-alone software product
• software service
• during the supply, development, operation, and maintenance of software products

ISO 12207 Development Process

5.3.1 Process implementation
5.3.2 System requirements analysis
5.3.3 System architectural design
5.3.4 Software requirements analysis
5.3.5 Software architectural design
5.3.6 Software detailed design
5.3.7 Software coding and testing
5.3.8 Software integration
5.3.9 Software qualification testing
5.3.10 System integration
5.3.11 System qualification testing
5.3.12 Software installation
5.3.13 Software acceptance support
The ISO/IEC 15504 series of standards is being replaced by the ISO/IEC 33001-99 series of standards.

Core Elements
- 33001 Concepts & Terminology
- 33002 Requirements for Process Assessment
- 33003 Requirements for Process Measurement Frameworks
- 33004 Requirements for Process Reference, Process Assessment and Organizational Maturity Models

Quality Management Principles
ISO 9004:2000

1. Customer focus
2. Leadership
3. Involvement of people
4. Process approach
5. System approach to management
6. Continual improvement
7. Factual approach to decision making
8. Mutually beneficial supplier relationships
**Sutton, Weird Ideas That Work, 2007**

Driving out variation makes sense when organizations do proven things in proven ways that still work.

Variance in people, knowledge, activities, and organizational structures is crucial to creativity and innovation.

**Forget the past, especially your company's successes.**

**Remember and replicate your company's past successes.**

---

**To Be Blunt...**

Many – perhaps most – software process improvement efforts fail.


- Approximately two thirds of respondents on SPI surveys do not report marked changes in their organizations as a consequence of their assessments.
- Organizations seem to have (unrealistically) high expectations from assessment-based SPI, and these need to be managed better.
Managing Improvement

Do you have improvement objectives?

Do you measure progress toward achieving those objectives?

Can you forecast whether you will achieve the objectives?
- If yes, are you considering what new objectives to establish?
- If no, what are you doing to take corrective action? Revise plans? Develop a new strategy?

Variations on
- Plan-Do-Check-Act (PDCA) or Plan-Do-Study-Act (PDSA)
- Define-Measure-Analyze-Improved-Control (DMAIC)

Adding Business Value

“Business orientation, that is, the extent to which SPI goals and actions are aligned with explicit and implicit business goals and strategies, was identified as one of the factors with the strongest influence on SPI success.”

“Management is mainly concerned with the successful implementation of PI in the sense that it proves useful to the organization. It is also interested in whether the new processes are in fact used homogeneously across the business unit.”
Questions and Answers

Contact Information

Dr. Mark C. Paulk
Institute for Software Research
Carnegie Mellon University
Wean Hall 5101
5000 Forbes Avenue
Pittsburgh, PA 15213 USA

Email: mcp@cs.cmu.edu
or Mark.Paulk@ieee.org
Web: http://www.cs.cmu.edu/~mcp/