Delay-constrained Rate Adaptation for Robust Video Transmission over Home Networks

Peter van Beek
Sharp Labs of America, Camas, WA, USA

Mehmet Umut Demircin
Georgia Institute of Technology, Atlanta, Georgia, USA

ICIP 2005
Video Transmission over Home Networks

- **Goals:**
 - Streaming high-quality video from a server to one or more receivers over IP-based home networks, in particular wireless IEEE 802.11 LAN (stored as well as live video)
 - Maintaining highest possible video quality and avoiding glitches / interruptions while keeping end-to-end delay to a minimum

- **Challenges:**
 - High bit rate of (MPEG-2) video: SDTV or HDTV quality
 - Multiple video streams may contend for limited network resources
 - Wireless network throughput is unpredictable and time-varying
 - Compressed video data has high sensitivity to loss (error propagation)
 - Low viewer tolerance to video distortions due to delays/loss
<table>
<thead>
<tr>
<th>IEEE standard</th>
<th>Frequency band</th>
<th>Link rates</th>
<th>PHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11b</td>
<td>2.4 GHz (ISM)</td>
<td>1, 2, 5.5, 11 Mbps</td>
<td>Direct Sequence Spread Spectrum (DSSS)</td>
</tr>
<tr>
<td>802.11a</td>
<td>5 GHz (UNII)</td>
<td>6, 12, 18, 24, 36, 48, 54 Mbps</td>
<td>Orthogonal Frequency Division Multiplexing (OFDM)</td>
</tr>
<tr>
<td>802.11g</td>
<td>2.4 GHz (ISM)</td>
<td>1, 2, 5.5, 11, 6, 12, 18, 24, 36, 48, 54 Mbps</td>
<td>Orthogonal Frequency Division Multiplexing (OFDM)</td>
</tr>
</tbody>
</table>

- Actual IEEE 802.11 Wireless LAN throughput performance is unpredictable and varies dynamically. Performance depends on:
 - Distance between stations
 - Presence of walls, doors and other structures
 - Interferers (cordless phone, microwave, etc.)
 - Mobility (varying distance)
 - Protocol stack (e.g. UDP/IP) and data encapsulation (payload size)
 - Competing cross-traffic on the network
- No guaranteed quality-of-service, even with 802.11e enhancements
Wireless medium prone to degradations due to path loss, fading and interference

IEEE 802.11 PHY & MAC error control mechanisms for reducing inherent error rate of wireless medium:
- Retransmissions of packets that were not acknowledged (at MAC)
- (Automatic) switching (reducing) of PHY link data rates

Experienced at application/transport layers as variations in packet delays and arrival rate (time-varying throughput)
- Packet loss rate at transport layer is very low (near 0)
Our overall approach: Real-time feedback-based video adaptation to channel/network

Focus of this paper: Delay-constrained video bit rate adaptation
 - Goal: on-time delivery (no decoder buffer underflows)
 - Estimate expected delay for transmission of video frame, given time-varying channel throughput and sender queue size
 - Select optimal bit rate for video frame, subject to delay constraint
Let Δt_j be the transmission duration for video frame j over the wireless channel (from the head of MAC queue to the receiver):

- Δt_j depends on channel condition, e.g., available bandwidth H_j at transmission time of frame j.
- Δt_j depends on number of bits used to encode frame j, and on packetization, i.e., packet size P_j and number of packets M_j.
- A simple approximation: $E[\Delta t_j] \approx (M_j \cdot P_j) / H_j$.

Let d_i be the total transmission delay for video frame i (to be encoded/transcoded):

- $E[d_i] \approx E[\Delta t_k + \Delta t_{k+1} + \ldots + \Delta t_j + \ldots + \Delta t_{i-1} + \Delta t_i]$

 \[\approx (M_k \cdot P_k + M_{k+1} \cdot P_{k+1} + M_j \cdot P_j + \ldots + M_{i-1} \cdot P_{i-1} + M_i \cdot P_i) / H_{est} \]
Delay-constrained bit rate adaptation

- **Goal:** on-time delivery

- **Delay constraint:** \(d_i \leq \Delta T_E \)
- **Expected delay approach:** \(E[d_i] = F \cdot \Delta T_E \) with \(0 \leq F \leq 1 \)
- **Select number of packets for frame** \(i, M_i \), such that:

\[
(\sum_{k} M_k \cdot P_k + M_{k+1} \cdot P_{k+1} + \sum_{j} M_j \cdot P_j + \ldots + M_{i-1} \cdot P_{i-1} + M_i \cdot P_i) / H_{est} = F \cdot \Delta T_E
\]
Bandwidth estimation

- **Bandwidth**: *maximum throughput available to application layer*
- Use *packet bursts*: groups of M back-to-back packets corresponding to a single video frame
 - Packet burst (video frame) submitted by sender application layer
 - Measure arrival times of packets at receiver application layer
 - Bandwidth sample obtained from M, time duration $\Delta \tau$ and payload P:
 \[H_j \approx P_j \cdot (M_j - 1) / \Delta \tau_j \]
 - Final estimate formed by first-order IIR filtering of bandwidth samples
 \[H_{\text{est},j} = (1 - w) \cdot H_{\text{est},j-1} + w \cdot H_j \]

```
+-------------------+-------------------+
|   Sender          |   Receiver        |
+-------------------+-------------------+
|      ↓             |      ↓            |
+-------------------+-------------------+
|                    | $\Delta \tau_1$   |
+-------------------+-------------------+
|                    |      ↓            |
+-------------------+-------------------+
|                    | $\Delta \tau_2$   |
+-------------------+-------------------+
```
Simulation setup

Channel Trace Collection

Client

Channel Trace

NS-2 Network Simulator

Application Layer - Server and client implement bandwidth estimation, feedback, and bit rate adaptation

Transport Layer – UDP

Network Layer – IP

Data Link Layer – Wireless IEEE 802.11 MAC

Physical Link Layer – Wireless IEEE 802.11 PHY
Channel traces simulating PHY and wireless channel

Video Trace

Input video bit-stream

Transcoding & Injecting lost/late packets

Output video bit-stream

Server

NS-2 Output Traces
Input and Algorithms

- **Channel traces**
 - 802.11B (2.4 GHz) – average bandwidth ≈ 4.5 Mbps (100 s)
 - 802.11A (5 GHz) – average bandwidth ≈ 14 Mbps (10 s)

- **Test video streams** (MPEG-2 encoded IBBP)
 - Mobile: 352x288 (CIF) 30p @ 4 Mbps 802.11B
 - Crew: 704x576 (4CIF) 30p @ 6 Mbps 802.11B
 - Harbour: 1280x720 (HD) 60p @ 16.9 Mbps 802.11A

- **Schemes compared**
 - I: Non-adaptive – attempts to transport all video data
 - I’: Non-adaptive with dropping of packets expected to arrive late
 - II: Basic bit rate adaptation – adapts only to estimated bandwidth
 - III: Proposed delay-constrained bit rate adaptation
Simulation Results – Mobile

CIF, 30p, input 34.2 dB at 4 Mbps, 802.11b channel

Percentage of frames with PSNR lower than 20 dB (occurrence of glitches):

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>I’</th>
<th>II</th>
<th>III F=0.3</th>
<th>III F=0.5</th>
<th>III F=0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95.2 - 95.7</td>
<td>42.9 - 65.1</td>
<td>0.2 - 5.5</td>
<td>0.0 - 1.7</td>
<td>1.2 - 2.0</td>
<td>1.5 – 4.0</td>
</tr>
</tbody>
</table>
4CIF, 30p, input 38.6 dB at 6 Mbps, 802.11b channel

Percentage of frames with PSNR lower than 20 dB (occurrence of glitches):

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>I'</th>
<th>II</th>
<th>III F=0.3</th>
<th>III F=0.5</th>
<th>III F=0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98.8 - 100</td>
<td>52.8 - 64.6</td>
<td>66.0 – 90.8</td>
<td>0.1 – 0.6</td>
<td>0.5 – 0.9</td>
<td>1.1 – 1.9</td>
</tr>
</tbody>
</table>
Simulation Results – Harbour

HD, 60p, input 35.3 dB at 16.9 Mbps, 802.11a channel

Percentage of frames with PSNR lower than 25 dB (occurrence of glitches):

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>I’</th>
<th>II</th>
<th>III F=0.3</th>
<th>III F=0.5</th>
<th>III F=0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92.8 – 97.5</td>
<td>37.0 – 49.2</td>
<td>0.0 – 0.0</td>
<td>0.0 – 0.0</td>
<td>0.0 – 0.2</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Proposed practical algorithm for delay-constrained bit rate adaptation for video transmission over (quasi-)reliable channel with time-varying bandwidth (WLAN links)

- Extensive simulations with NS-2 using real channel traces and various MPEG-2 video sequences
 - Significant PSNR gains achieved by bit rate adaptation (use of transcoding)
 - Significant PSNR gains achieved by delay-constrained algorithm (compared to basic non-delay constrained algorithm)
 - Delay-constrained algorithm significantly reduces the number of buffer underflow events (glitches)

- Other work:
 - 802.11e WLAN links (reported at ICME 2005)
 - Pro-active approach
 - Distortion optimization
Visual comparisons

<table>
<thead>
<tr>
<th>Device</th>
<th>Resolution</th>
<th>Frame Rate</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile</td>
<td>352x288 (CIF)</td>
<td>30p</td>
<td>802.11B</td>
</tr>
<tr>
<td>Crew</td>
<td>704x576 (4CIF)</td>
<td>30p</td>
<td>802.11B</td>
</tr>
<tr>
<td>Harbour</td>
<td>1280x720 (HD)</td>
<td>60p</td>
<td>802.11A</td>
</tr>
</tbody>
</table>
Thank you for your attention.