7.4. Estimation of stable age distribution
Equation [5] can be rewritten as:
Substituting this equation into [3] we get the relationship between the number of organisms in age x and in age 0 in a stable age distribution:
Now we can estimate the proportion of organisms, c , in age x:
 [7] 
Age, x  lx  exp(rx) 
lxexp(rx)  cx  Simulated cx

0  1.000  1.0000  1.0000  0.2413  0.2413

1  0.845  0.8507  0.7188  0.1734  0.1734

2  0.824  0.7237  0.5963  0.1439  0.1439

3  0.795  0.6156  0.4894  0.1181  0.1181

4  0.755  0.5237  0.3954  0.0954  0.0954

5  0.699  0.4455  0.3114  0.0751  0.0751

6  0.626  0.3790  0.2373  0.0572  0.0572

7  0.532  0.3224  0.1715  0.0414  0.0414

8  0.418  0.2743  0.1147  0.0277  0.0277

9  0.289  0.2333  0.0674  0.0163  0.0163

10  0.162  0.1985  0.0322  0.0078  0.0078

11  0.060  0.1689  0.0101  0.0024  0.0024

Total    4.1445  1.0000  1.0000

Age distribution estimated using equation [7] (column 5) coincided with simulated age distribution after 50 iterations of the model.
